Bucketed Actual vs Expected
Jared Fowler
visualisingoverallave.Rmd
The function one_way_ave()
creates one-way actual vs
expect plots.
Pre-processing
A critical step for this package to work is to set all categorical predictors as factors.
library(dplyr)
library(prettyglm)
data('titanic')
# Easy way to convert multiple columns to a factor.
columns_to_factor <- c('Pclass',
'Sex',
'Cabin',
'Embarked',
'Cabintype')
meanage <- base::mean(titanic$Age, na.rm=T)
titanic <- titanic %>%
dplyr::mutate_at(columns_to_factor, list(~factor(.))) %>%
dplyr::mutate(Age =base::ifelse(is.na(Age)==T,meanage,Age)) %>%
dplyr::mutate(Age_Cat = prettyglm::cut3(Age, levels.mean = TRUE, g =10))
# Build a basic glm
survival_model <- stats::glm(Survived ~ Pclass +
Sex +
Fare +
Age_Cat +
Embarked +
SibSp +
Parch,
data = titanic,
family = binomial(link = 'logit'))
Actual vs Expected Bucketed By Prediction Percentile
actual_expected_bucketed(target_variable = 'Survived',
model_object = survival_model,
data_set = titanic)
actual_expected_bucketed(target_variable = 'Survived',
model_object = survival_model,
data_set = titanic,
facetby = 'Sex')